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A model is presented where the level-population densities in quasi-steady-state hot dense plasmas are
described by means of large nonrelativistic superconfigurat®@s), whose configuration populations follow
a decreasing-exponential law versus eneiggltzmann like for a temperature depending on the SC. Two
systems of linear equations are obtained. The first one yields the average-state population densities of the SC's.
Using these results, the second system yields the SC temperatures. In this model, a very large number of atomic
levels is accounted for in a simple way, thus yielding the configuration populations and, hence, the ionic
distribution and average charge. It also yields accurate simulations of the spectra, which are of the essence for
emissivity and absorption calculations. It opens a way to time-dependent calculations.
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[. INTRODUCTION A simple global method consists in defining eagelec-
tronic configurationas one of these ensembles. The average
Typical hot-plasma experiments are currently made by intransition rates between configurations are computed, and a
teracting lasers with pulse lengths ranging from subpicosedcERM system with one equation per configuration is solved
ond[1,2] to several nanoseconf3,4], fast ignitorg 5], high-  [13]. However, more than 10 000 configurations have often
intensity X [6] andZ [7] pinches, hohlraum x-ray drivd8],  to be introduced. For that reason, larger ensembles are
and coherent x-ray source®] with solid and gaseous preferred—e.g., thesuperconfigurations(SC’s), originally
targets: The plasmas in these experiments form verydefined by Bar-Shaloret al. [14]. Among all the published
quickly, reach high electron temperatures, and span a larg@ethods, the following two have been the main references
range of densities. Therefore, for describing the resultingy, the present work.
plasma ions, the simple laws of local thermodynamic equi- In the first method, namedvERROES/TRANSPEC [15],

l'.b”um .(LTE) are not pertinent. Several non—L_T(HE\ILTE) each SC is defined as the totality of the configurations pos-
simulation methods have been proposed, in which the value$

of the ion population densitiesnore simply calledhopula- sessi_ng the same fixed set of ogccups)ation numbers of the
tionsin the following are derived by taking explicitly into a;[om|c s_,hells. fFor e>_<amp|e_, éﬁ(z)Z)s(S) dresprelsents the_ 15h
account the effects of different atomic processes occurring iff SCironic configurations with 2, 8, and 5 electrons in the
the plasma. The results of some of these codes have beghellSnN=1, 2, and 3, respectivelj16]. Average transition
presented in a NLTE kinetics workshdfi0]. For highZ rates for the superarrays between the SC’s are computed in

plasmas, the discrepancies between the results are very largéder to write one CRM equation per SC. Within each SC,

and the conclusion is that more work is needed. the configurations are assumed to be populated according to
Generally, the method used for finding non-LTE level the electronic temperaturk, .
populations is the collisional-radiative mod€RM) [11,17]. In the second method, namedRroLL [17], the SC’s are

It consists in solving a homogeneous system of many lineabuilt from relativistic orbitals. For example, the SC
balance equations. Each equation relates to one atdmic (1S 25 2Py 2pa0)*(3p123p3)? contains 69  relativistic
level. The equation represents the equality between the nungonfigurations. At the beginning, large SC's are defined, av-
ber of atoms that are brought to this level per second and therage transition rates between the SC’s are computed, and
number of those which leave it. In all hot plasmas, excepthe CRM equations are solved for the populations. In subse-
those of the very light elements, several thousands or milgquent iterations, the SC’s are split into smaller and smaller
lions of levels are needed for obtaining significant physicalSC’s, and the values obtained for their populations are com-
results. For this reason such systems are not tractable, apéred with those of the previous step. Iterations are stopped
some types of global methods have been proposed, in whiclvhen the changes between two steps are considered to be
the individual levels are replaced by large ensembles of levhegligible. At the beginning, the total populations of the rela-
els. tivistic configurations are assumed to obey the statistical law
for a temperaturel, proposed by Busquet in theAaDIOM
model [18]—that is, scaled to give an average ionization
The references in the preceding sentence are a parochial subsetfite equivalent to an LTE calculation.
the available literature and do not represent the broad and dynamic Describing the ionic system as a collection of SC’s may
efforts on going in the field of plasma x-ray spectroscopy. be insufficient for revealing the spectral details. Indeed, for
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calculating the emissivity and absorption monochromatic co- 2
efficients, the transition arrays between electronic configura- 4 |~ 1834V ]
tions are used, e.g., in the unresolved transition arrays,, 300.2 eV 1
(UTAs) formalism[19]. The total population of each con- :

figuration must be determined. However, there exists noz
proof that, within each SC, the populations of the configura-
tions follow a temperature law for eith@r, or T,. We pro-
pose another type of model, where within ednbnrelativ- o P
isticc SC the populations of the configurations obey ag ™[ |——zmg

tion/gc')

al
,
@

U

n pop!

12 [ | —e—gieg

configuratiol

temperature law for apffective temperature (5C) specific ae [ | 3745 178.3 eV ]
to that SC. Each configuration is represented by its average |, , . XX
energy, with the assumption that M states are degenerate. 00 5.0x10°® 1.0x10” 1.5x107
The CRM system is built with one equation per SC. Its nu- configuration energy {om")

merical coefficients are combinations of configuration-to- FIG. 1. Evid ; . tion i in x
configuration transition rates. It happens that it is possible to - Cu I{ke)VITr?enlcsveI()rosuu?aetriz(r)wr; Erfzé?grm?rl%ega Lrjr:ang on
split the initial system into two systems of the same size, on ' Pop y

. vel-by-level CRM calculation. They are summed into configura-
[elated tto the ?:C po;:;:latlons ar|1td the Otge; one t(.) the S on populations. The average populations are deduced by dividing
emperatures. From these resulls, one deduces n a Vepy ,q degenaracies. The logarithms of these average populations

simple way the configuration populations. It is assumed thacjes squares, diamonds, crogsa fitted by the least-squares

within each configurationthe quantunstatesaJM, of all  ehod to four segments, whose slopes are equal to the inverse SC
the aJ energy level§wherea denotes the relevant coupling temperatures. For these fits, the values of Pearsardsfficient are
schemg are equally populated. equal to 0.996, 0.861, 0.988, and 0.965, respectively.

This model is essentially nonrelativistisee Sec. VE
The LTE laws are not applied, except the Maxwell- sional excitation and deexcitation, in agreement with the re-
distribution law for the free-electron velocities, whose char-syits of Van Regemortd23].
acteristic time is much shorter than those of the atomic pro- When a guasi-steady-state CRM calculation is computed
cesses. The time-consuming splitting/iteration procedurefor a large number of levels, the populations of the levels of
and the use of partition functions are avoided. WeII-baIance@ach Configuratiorc tend to Obey a temperature law for a
sets of SC’s are employed, and convergence is reached whepecificT value[24]. This has been checked numerically in
the number -Of SC’s introduced |S Iarge en-OUgh. Let this r:lumthree isoelectronic series of ionﬁ_J:e IV-V-VI , 36Kr XIV-XV-
ber be 200 -|nSte-ad of 100, the increase in the CompleXIty Of(v|’ and 42M0 XX-XXI-XXII -, for the same set of Configura_
the calculations is moderate. _ _ tions [25]. This set contains 27 configurations, with 4668
In Sec. Il, the concept of effective temperatures is supjevels. Several electronic densities are assumed. Three
ported by the correlations, which are explained in Sec. lllthrough eight atomic processes have been introduced, for
The relevant equations of the model are derived in Sec. IV. Ayhich the transition rates have been computed by means of
discussion and conclusion are given in Secs. V and VI.  thenuLLAc code[26]. The temperature of each configuration
is determined by fitting the values found for the populations
of its JM states(i.e., theJ-level populations divided by 2
+1) to a decreasing-exponential law. The uncertainties
The concept of effective temperatures specific to elecfound in the fitting process are small. For the lowest elec-
tronic configurations in an atomic plasma has first appearettonic densities computed (Dor 106 cm™3), the obtained
in the results of tensor-operator calculati¢8,21] of spon-  temperatures are about 3 or 4 times smaller thgnwhich
taneous emission in the Fespectrum. More precisely, if the means that the system is far from LTES].
level populations of an upper configurati@f =n¢Nn’¢’ Proving the existence of SC temperatures is more diffi-
(with [€—¢€'|=1) obey the Boltzmann decreasing- cult, due to the complexity of the SC27]. Indeed, no ana-
exponential law for someonfiguration temperatured , the  lytic derivation of SC temperatures has yet been found by
radiative transfers to the levels @=n¢N"! enforce the means of Racah algebra, even for spontaneous emission.
same type of law for another temperatdrg [22]. However, (i) there exist strong similarities between the tran-
The above derivation can be extended from spontaneousitions between the configurations and those between SC's,
emission to the other seven importambnoelectroni@atomic  and(ii) the existence of specific temperatures within the con-
processes: i.e., radiative absorption, collisional excitatiorfigurations can be explained analyticallg2] and demon-
and deexcitation, photoionization and radiative recombinastrated numerically25]. In fine, only approximate relations
tion, collisional ionization, and three-body recombination.can be used for writing the equations that yield shipercon-
This extension is evident for the first process, which is thefiguration temperaturem a hot plasm#28] (see Sec. li)l. In
inverse of radiative emission. In general, it can be demonthe following, they are calledorrelations
strated rigorously for the processes that involve free elec- Fortunately, it is possible to demonstrate numerically, by
trons, in the assumption that the radial quantity with a givermeans of an ordinary collisional-radiative computation, that
name has the same value for all the levels of a configuratiorthe populations of théM states of some simple SC’s tend to
Thus, it is not surprising that it holds fairly well for colli- obey a temperature law. An example is presented in Fig. 1,

Il. TEMPERATURE LAWS

026403-2



MODEL FOR COMPUTING SUPERCONFIGURATION . .. PHYSICAL REVIEW &9, 026403 (2004

for the case of four SC’s N s N +10monN" o oN+107 N o gnN” |
(354, (3)4(5) (3)TAY. B)@)HB)) in the xe OO

XXVI (Cu-like) ion and three SC’s _ oo ALY [AET+1) (407 +2
((3)™8,(3)(4),(3)1(5)Y) in the Xe xxvii (Ni-like) ion, =26-P(n€,n'¢7) ( N )( N’ )( N )
which contain altogether 4567 Cu-like and 249 Ni-like lev- (1)

els. Eight major processes are accounted for: namely, spon-

taneous emission, collisional excitation and deexcitation,

polh_smnal ionization and three-body recpmblnatlon, au_tom_n-where P(n¢,n'¢") is the radial integral
ization and resonant capture, and radiative recombinatio

ro0 2 . . .. .
. ) _ Une(r)rupr e (ryr<dr for electric-dipolar radiative transi-
The input data are the electronic density, Toun(Druy e () P

tions, and(-~ is the larger of the two orbital quantum num-
=1.2x10° cm 3 and temperatureT,=450 eV. The n, ; d a

. : . o bers¢ and ¢’, and where there may occur more than one
value is that of an optically thin plasma, which justifies that deeny prN" i i
radiative absorption and photoionization are not considerePectatoropen subshell liken¢"™ [29]. This formula is
Moreover, it has been found experimentally that the Cu- andteresting becaus@) the selection rulgé —€'|=1 strongly
Ni-like ions are abundant for these valuesngfand T [3]. reduces’, ’the number of arraysii) the values of the
First, all these 4816 levels are entered in a level-by-level(N€,n"¢") radial integrals can be assumed as mdep,endent
CRM calculation and steady-state level populations aréf the considered array, artii) for fixed values oh andn’,
found. Second(i) summing the populations found for the With n<n’, the largest integral is, by far, that with=n

Cu-like levels (the most numerous in the calculated Jlist — 1 and¢’=n.

yields the populations of the corresponding 91 configura-

tions, (i) the population of each configuration is divided by 1. First correlation: Correlation between
the degeneracy for obtaining the average-state population, the configuration energies

(iii) the logarithms of these average-state populations are . i
plotted versus the configuration-average energies, (and In N gfar?\‘(?:all, InN+l th’eN’ supergrray SE—S0
the points of this plot are fitted by least squares to four~ (M™(n")" ""—(n) ,(” )"), the higher-(lower) en-
straight lines, which correspond to the four relevant SC's. €rdy configurations o8C’ deexcite preferably towards the

The values deduced for the four SC temperatures are pr&igher-(lower-) energy configurations C. Indeed, in each

sented in Fig. 1. Based on the linear variation of the |Oga_transition array, the lower and upper configurations only dif-

rithms of the average-state populations, the concept of S¢€r by one orbital. The(often) numerous spectator orbitals

temperatures, different froffy,, appears to be quite relevant, &€ unchanged. When most of them are high-enéigy-
It is noteworthy that the SC (3)(4)? looks like it contains energy orbitals, the energies of both configurations range

two sets of configurations with different temperatures. How-2M0ng the highesfowesy in their SC This correlation has
ever, the straight line that is drawn has been obtained bglso been caIIe_d a propensity law, when applied to t_he case of
means of a degeneracy-weighted rms calculation. The fa&nergy I_evels in the tr_ansmon array between cor_1f|_gurat|ons
that it nearly coincides with one of the two sets, with an(p' 337 in Ref[30). It IS chqractenzed by a coefficient de-
excellent Pearson’s coefficient, means that the other set "0ted p(SC —SC), which is calculated by means of a

mainly contains configurations with a lower degeneracy, sGtrength-weighted root-mean-squares equation, which ex-

that the global description of the populations is satisfactoryPreésses the approximate proportionality betwete(Cy)
—E(C/)~ Ea(SC) andAE(C))=E(C;) ~ Ea(SO), where

i andj refer to configurations 08CandSC/', respectively,

E(Cj) and E(C{) are the configuration energies, and

E.(SCO andE,[(SC') are the weighted average energies of
In the place of exact relations, it is possible to fecawtre-  the configurations o8CandSC', respectively. The coef-

lations between two SC'’s that are linked by some atomicficient obeys the equation

procesgor within one SC, where this process ocguia the

present work, this word simply mearmgproximate linear

relations Their coefficients can be obtained by solving , ,

through the least-squares method systems of linear equa- ,EJ S(Cj—C)AR(C)AE(C))

tions.

IIl. CORRELATIONS BETWEEN TWO SC’s

=p(SC'—SC) >, S(C/—C)AE(C)% (2)
i
A. Typical example: Radiative emission
Radiative emission is the simplest process for demonstrat- , _ ,
ing the existence and the calculation of correlations betweeh Eq. (2), S(C;—C;) is the strength of th€; —C; array. It
SC's. The basic equation is that for the total strengtg’  is defined (like for all processesas the productR(C/

—C) of the electric-dipolar transition array between con——>Ci)g(Cj’) of the transitionrate Rby the degeneracy of
figurationsC andC': the initial configuration.
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1.1x10° B. Generalization to the other atomic processes

The validity of the first correlatiofEq. (2)] can be ex-
tended from spontaneous emission to all the other seven im-
portantmonoelectroni@atomic processes. Indeed, this corre-
lation is essentially based on the fact that oahe electron
changes in the process, whereas the same spectator electrons
are responsible for the bulk of the energies of both configu-
rations in a transition array. Four numerical examples are
presented in Fig. 3, for four different processes: namely,
spontaneous emission, collisional excitation, collisional ion-
ization, and autoionization. Actually, autoionization iglia
electronicprocess. On the average, the first correlation is less

i , , - well than for the monoelectronic pr
FIG. 2. Correlation between the configuration energies in the ell obeyed than for the monoelectronic processes, because

(3)4(5)*-(3)3(5)? superarray of Geviil . Each point in the vertical itis based. on the fact that ontyo elec_trons change.

scale on the left represents the energy of a configuration of The validity of the se(_:o_nd correl_at|c_[rEqs.(3) and (4_)] )
(3)4(5). It is linked by a straight line to a point on the right, ca&n be extended to collisional excitation and deexcitation,
whose ordinate is the weighted average energy of all the configuhose rates have large values only for optically allowed
rations of (3§(5)2, each weight being the relevant electric-dipolar transitions[23]. It can also be extended to photoionization
strength. It can be seen that the higlilewer) configurations of and radiative recombination, for which it is known that the
(3)%(5)* deexcite preferably towards the highawer) configura-  dominant radial parameters relate to the same pairs of orbit-
tions of (3¥(5)". als as those for radiative emission. Four numerical examples

) ] ] - ) ) are presented in Fig. 4, for the same four processes as
This correlation is exemplified in Fig. 2 for a i, Fig. 3,

spontaneous-emission array. In this plot, each segment links
the point representing a configurati@n to that representing
the strength-weighted average energy of @je configura-
tions. The fact that most of these segments do not cross is the [V. COLLISIONAL-RADIATIVE EQUATIONS
correlation phenomenon.

Energy (cm™)

3.0x10°

A. General transfer equation

The quantity that represents the transfer of atoms per unit
time from all the configurations of the ions to some configu-
ration C; of superconfiguratiorSC readsEp,SC,,jR(P,Cj’

In eachSC'— SC superarray, the second correlation re- —C;)N(C/). In this sum,N(C/) is the population of con-
lates the energy of._each configuration $C to th(_a total  figurationC/, P is an atomic process, amR(P, C{—C)is
strength of the transition arrays that are linked to it. It reads, tyansfer rate fron€] to C;. The temperature law i8C' is

written in the form

2. Second correlation: Correlation between the array strengths
and the configuration energies

2;S(Cj—Cy)
—————=a(SC —-SO)+ B(SC -SCAE(C)),
9(Ci) AE(C))

3) Nuq)zguq)mscwem{—i?ﬁiyﬂ, (5)
with the same notations as in Eg), and wheregy(C;) is the

degeneracy of configuratianlt can also be written fo8C',

for the same atomic process, in the form wheren(SC') is defined as thaverage-statgoopulation of
Cj’. The quantityn(SC') can also be written as the total
population of SC' divided by the partition function oc§C'
for temperatureT(SC'). Thus, the total transfer of atoms

(4)  towardsC; reads

EiS(Cj/—>Ci)

o(C) = y(SC —~SC)+ 5(SC —~SC)AE(C)).

left-hand parts of Eqs(3) and (4) are plotted versus the
energiesAE(C;) andAE(Cj’), respectively. In general, the
corresponding «(SC' —SC), pB(SC—SC), y(SC ,
—SQC), and §(SC' —SQC) coefficients are deduced from % [{_ AE(CJ')) 6)
such plots through least-squares fits to the linear expansions kT(SC) /"

in Egs.(3) and(4). This correlation can be derived analyti-

cally in some simple casd8]. It is generally less well

obeyed than the first one. By definition, the producR(P,C{—C;)g(Cj) is the total

For this correlation, the pertinent graphs are such that the [

= 2 R(P,C/—C)g(C|)n(SC)

P,SCj

dN(C))
dt |
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8 . o the energies of two configurations
800,50 J600 400 200 0 200 400 600 800 linked by an atomic process, re-
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(b) Xe xxvui, collisional excita-
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-600 —400 -200 O 200 400 600 800

Energy of the configuration in (3)"°(4)'

Energy of the configuration in (3)"°(4)'
o
o
AR
I g; ]
Energy of the configuration in (3)"°(4)°
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£ () %ﬁ"o £ (d) - ionization from (3}%4)? to
§ 5P S 1 8§ *°f S T (3)'%(4). (d) Xe xxix and Xe
E 2007 o{gf 1 E 200¢ . XXX, autoionization from
3N $30% | & | (3)*(5)1(6)* to (3)*(4)%. Al

§ 03&00 § energies are in eV.

o —200 080 o0 o -—200
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2 _s00 — 2 600 ‘

e %800 600 400 200 0 200 400 5o, 8o g %600 —400 —200 0 200 400 so ,800

w Energy of the configuration in (3) "(4) w

Energy of the conflguration in (3) (5) (6)

strengthS(P,C| —C;) of the transitions fronC; to C; through theP process. The sum ovgralso includes the levels that
belong toSC but not toC; .

The correlation laws introduced in Sec. Il are now taken into account. Through the first one, the energy6incig.be
replaced by the productp(P,SC'—=SCAE(C;). Through the second one, the sum; R(P,Cj’—>Ci)g(Cj’)
is replaced byg(Ci)[a(P,SC' —SC)+B(P,SC' —SQAE(C;)]. In this way, theC; configuration disappears from the
formula for the transfer:

T =g(Cy) 2 n(SC)[a(P,SC' —-SO) +B(P,SC' —-SCAE(C;) Jex
i P,sC’

{dN(Ci)} [{p(P,SC'HSC)AE(Ci)

kT(SC) ) ™

In the final equation fodN(C,)/dt, one also includes the contributions of the processes which transfer &mme€; to
all the other configurations of the system. For that purpose, Bysnd (5) are applied, yielding

dN(C) s , , , p( p(P,SC’HSC)AE(CQ)
i fg(ci)P’SC, n(SC)[a(P,SC —SC)+ B(P,SC —~SC)AE(C,)]exp — T50)
(Ci , ,
g(ci)n(sc:)exp( kT(SC)),EC, [y(P,SC—SC)+8(P,SC—SC)AE(C)]. (8)

We call Eq.(8) the master equatiomf the model. In the sum§C' is not necessarily different froi8C because summing
over P ought to include the processes which are responsible for the transfers between the configuratiorGwithin

B. Linearization of the collisional-radiative equations

Equation(8) is a balance equation. In the quasi-steady-state approximati(G;)/dt is equal to zero. One is left with a
set of nonlinear coupled equatiof@ne per superconfiguratipnvhere the unknown quantities are the average-state popula-
tionsn(SC') and the inverse temperature§ ($C') of all the SC’s. It is essential to linearize these equations with respect to
the latter type of unknown quantities.

First, one can divide the first sum in E@®) by the second sum, which gives
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g * 0 40 g 00” ‘, of each point is the energy of a
€ 4F * “.’ * ] g sor . i configuration in some SC, and its
o ,| O %, S el o ® 1 ordinate is the sum of the
< oo, o * strengths of the transitions which
T < *
%600 400 200 0 200 400 600 800 #€ 406-300-200-100 0100 200 300 400 500 600 are linked to that configuration by
Energy of the configuration in (3)"°(4)" Energy of the configuration in (3)*(5)’ some atomic process, divided by
its degeneracya Xe xxix, spon-
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54 ' ' ' 39 ‘ sional excitation from (3%¥(5)*
82} ©1 2% (@ . ® * ] to (3)1%(5)2. (c) Xe xxix and Xe
T 50| ] £ 371 . ] xxviil, collisional ionization from
g G0, %0 3009 So %ty 2o ) . (3)%(4)? to (3)3(4)%. (d) Xe
& 48 | 'S L4 2 L4 4 < 36 | * R . .
e ¢ s s 3’ M & XxIx and Xexxx, autoionization
g - 1 & *°f o * 1 from (3)1(4)Y(5)* to (3)'. Or-
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> | | € | | . .
S g 33le scissas are in eV.
“O600 400 200 0 200 400 600 800 %2400 200 0 200 400 600
Energy of the configuration in (3)°(4) Energy of the configuration in (3)"
> s a(P,SC —-SCO)+B(P,SC —-SCAE(C)) p(P,SC —-SC)AE(C))
n exp —
p.SC ( )Epyscr[’y(P,SC*)SCI)‘F 8(P,SC—SC)AE(C))] kKT(SC)
sC AE(S) 9
=n expg — .
(SO kT(SC ©

The fraction in the first line of Eq9) is not a linear function oA E(C;). But it can be approximated by the linear expansion
q(P,SC —-SO+r(P,SC —-SOAE(C;),

where the coefficientg andr are determined as is shown in the Appendix.
Second, after dividing the exponential function in the first term of @by that in the second term, one obtains

> n(SC)[q(P,SC —SC)+r(P,SC —SC)AE(C;)]ex
pP,sC’

p(_p(p,scéscmaci) AEE)) _so. 1o

KT(SC) k1o ™

Most often, thep factors do not differ much from (see Sec. equal to zero, one obtains a system of homogeneous linear
V D). Therefore, for expanding safely the exponential func-equations for the average-state populations. The equation for
tion as a linear function oAE(C;), it is not necessary that superconfiguratioisCreads

AE(C;) be much smaller thakT(SC) andkT(SC'). It is
only necessary that all the temperatures do not differ too
much one from the other, within each pair of neighboring
ions.

> n(SC)q(P,SC' —SC)=n(S0O). (11
P,sC’

Subtracting Eq(11) from Eg. (10), expanding linearly the

exponential function, dropping terms iRE(C;)? (this ap-
Actually, Eq.(10) is valid for all the configurations of the proximation is discussed in Sec. \jDand dividing the

ions in the plasma. By making all th&E(C;) quantities whole equation byAE(C,), one obtains a system of inho-

C. Splitting of the collisional-radiative system of equations
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mogeneous linear equations for the inverses ofSigem- TABLE |. Superconfigurations introduced for Xexvii
peratures. The equation for superconfigura@freads (Co-like).

kT(SC) Relative Incoming
Superconfiguration No. conf. (eV) population flux (s™%)

p(P,SC' —=S0O
> n(SC’)[Q(P,SC’HSC)(W (3)Y7 3 175 8.9510° ! 1.72x10%
P.SC (3)15(4)? 24 189  7.8K10°2 6.52x10'
1 } (3)%(5)* 30 175  6.2x10 % 9.66x10°
- W) —r(P,SC —’SC)} =0. (12) (3)19(6)* 36 108 1.8K10°% 3.72x10°
(3)*4(7)* 42 176  1.4%10°4 2.65x10°
(3)%(8)* 48 220 1.1%10 % 1.60x10°
The computation runs as follows. First, the system of  (3)!%(4)? 90 168 2.2x10 % 2.66x10%
equations(11) for the average-state populations of the SC's  (3)*%4)(5)* 180 169  2.3x10°3 1.21x10%
is solved. Second, its numerical solutions are implemented (3)%4)(6)* 216 126 1.5%10°° 4.78x10°
into the system of equationd2), which can be solved for (3)%(4)(7)* 252 118 3.2K10 4 2.61x10°
the inverse temperatures of the SC’s. (3)%54)1(8)* 288 123  2.1K10°% 1.48<10°
(3)*%(5)? 135 144 1910 % 1.07x10°
V. DISCUSSION (3)15(15)1(6)1 270 139 6.7&10:5 8.32x 1¢°
(3)%%(6)? 189 124  1.5%10°° 1.56x10°

A. Numerical application

Much information has already been gained from the first .
numerical application of the present mod8ll]. The case only differ by the total numbers of electrorisee Sec. VA

studied is that of an experimentally well-characterized xenor‘?‘bove' In this way, itis ensured that the totality of the sets is

; ) 0 . 3 ~well balanced.
EL;ZTJ% fgiéh:\gf C;?Qlfeli?/giltt)?oﬁg?zngg fro?nn?é;zy The number of SC’s that ought to be considered for solv-

to Xe xxxi. In each ion, 13 or 14 SC’s are selected. "9 & 9IVen physma_l situation remains an open problem. We
. : .. _._consider that it suffices to choose enough well-balanced sets
They constitute two sets. The first set of SC's is ) . S . ) )

N N—1 N—2, 4x2 of SC'’s for neighboring ions, like those defined in Sec. V A.
KL(3)V, KL(3)N"%(4,5,6,7,8Y, KL 2(4)% 1 i N 1o th ¢ partition functi h
KL(3)N"2(4)1(5.6.7.8}, andKL(3)N"2(5,62, in the nota- is avoids resorting to the use of partition functions. The
tion for th SC’, ' "th’N—14 18 Th e d set d partition function is the Saha-Boltzmann population of a
lon tor N,e S, Wi N,__l —16. 1he SeCOT7 si+rlea S given SC in the considered space of SC's for a given tem-
KLM(4)™, KLM(4) (5,6,7,8), KL(3)™(4)"™ "% perature, which may or may not be the temperature of the
KL(3)Y(4)N (5,6,7,8)}, and KL(3)(4)N ~1(5,6)%, with  free electrons that drive the systéi8]. In order to converge

"=1-3. HerekK, L, andM represent the complete shells to a truly non-LTE set of SC populations, one must itera-
n=1, 2, and 3, respectively. For example, the SC’s considtively split the considered SC'’s, recompute the partition
ered for Xexxviil and the numbers of their configurations functions, and then recompute the resulting SC populations
are listed in the first two columns of Table I. Th¢SC) and  [17]. Our method avoids starting from a Saha-Boltzmann
T(SO) values have been determined numerically. The popudescription of SC populations at sor@lapted temperature
lations of all the configurations, hence, those of the SC'sand avoids iteratively generating rates and resolving the mas-
have been obtained by means of E5). ter equation.

The obtained ionic distribution is very close to that pub-
lished previously{3]. For the comparison with the experi- C. Relevance of the high-lying SC's
mental spectrum, the fact that the model yields the configu-

ration populations is essential, because these populations can Irt]'ls i':terseé,tmi% tr? crirl]scrlljssl the lr;ecteis?ty ?fﬂgntrr?]dlamrglzthre
be entered into the formalism of unresolved transition 9 Y'N9 S umerical appiications ot the mode!. =0

A ; P that purpose, one can compare the relative contributions of
?Srrgéi,sl'ﬁ'é]m the form of UTA' or spin-orbit-split arrays the SC’s(i) to the total populations of the ions afid) to the

transfers between the SC's. This comparison can be seen in
Table | for the 14 SC'’s of the Xexviil ion (Co-like). For
each SC, the incoming flugn the far-right columnis de-

In the model, the atomic levels are gathered into SC'sfined as the total number of the atoms which are brought, per
which are, actually, pairs of Layzer complexgk6]. This  unit time, summed over the different processes, either from
choice offers several advantages. First, the number of SC’s the upper or from the lower Co-like SC’s or from the SC’s of
relatively small, because they have large degeneracies arde neighboring Fe- and Ni-like ions. The comparison is
because they are nonrelativistisee Sec. VE below Sec-  most striking for the lowedt(3)!’] and the 12t (3)*(5)?]
ond, they possess some correlation properties, which havgC’s. Whereas the 12th is 4500 times less populated than the
been foreseen in special cases and which are crucial for déewest, its incoming flux is only 160 times smaller. The in-
veloping the model. Third, the sets of SC’s chosen for thecoming fluxes are also very large for (84)? and
various ions resemble each other very much, because th¢g)>(4)(5). It can bechecked that this is due to very active

B. Selection of the superconfigurations
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TABLE II. Total flux per procesgs ). found that the value of thépositive relative difference €*
— . —1—x)/€* is smaller than 0.18 in 74% of the superarrays.
Spontaneous emission 7238111 This is a favorable test. It is significant, although it is made
Collisional excitation 3.181 iari
posteriori
Collisional deexcitation 4.8710%
Collisional ionization 5.5 10°
Radiative recombination 1.5010° E. Relativistic effects
Three-body recombination 3.7 . .
Autoioniza{ion nat 4.1% 101 The transition rates used in the present work are calcu-
Resonant capture '41@011 lated between nonrelativistic configurations. However, the

gross relativistic effects are taken into account in the sense
that the energy Slater integrals and the transition rates are
o . computed in the Pauli-Breit approximation. Thelependent

autoionization and resonant-capture channels, which happ&g4tivistic effects can be neglected for the determination of
to predominate by one order of magnitude over the,, ations and temperatures. For example, the spin-orbit

spontaneous-emission process. It can be concluded that tage (s are not expected to have any noticeable importance in
highest SC's definitely participate in the dynamical equilib-yhe honylation regime, because the collisional transition rates
rium of the level populations, although they contribute very, .o " ade of off-diagonal elements 6 the electrostatic-
little to the emitted spectrum. repulsion operatof13].

For the relative importance of the various processes, an- However, after the populations have been obtained,

other kind of comparison is presented in Table Il. For €achy yenendent relativistic effects may be important for the final
process, the total flux is the sum of the incoming fluxes 10 all;4cations of emissivity and absorption. Indeed, they often
the SC’s. In this way, it appears that autoionization and reSOragylt in the breaking of transition arraggTAs) into spin-

nant capture have fluxes nearly equal to the largesfi opjit arrayg SOSAS, in which the electric-dipolar tran-
three: namely, those of spontaneous emission and CO"Eition integrals argd dependent.

sional excitation and deexcitation. The importance of these
dielectronic processes has already been str¢82edl. Here,
it has also been found that, if the autoionization and
resonant-capture processes are discarded from the calcula-In conclusion, the method of superconfiguration tempera-
tions, the average charge increases by more than fouures is a type of collisional-radiative model where dozens of
charges. Moreover, it has been seen that about 30% of thtaousands of electronic configurations can be accounted for
total autoionization flux goes to SC'’s that are not the lowesby solving small-size systems of linear equations. The opera-
in their respective ions. tions run as follows.

(i) The coefficients for the linear equations are deduced
from those for the transition rates between configurations,
calculated through existing codes.

" _— . ) (if) The system of equations for the average-state popula-
In addition to the initial basic assumption of the tempera-jons of the SC’s is solved.

ture law, two important approximations ought to be vali- i) Using these populations, the system of equations for
dated. First, the linear correlations often correspond to muckhe temperatures of the SC’s is solved.

less convincing pilots than those of Figs. 3 and 4. However, it (jy) The populations of the configurations are deduced,
has been found, in the example of the xenon plasma, that thgsing Eq.(5), and they are added for each of the ions. This
processes with the best correlation plots correspond to thgelds the ionic balance of the plasma and Rfevalue.

VI. SUMMARY AND CONCLUSION

D. Validation of the linearization procedures

largest transfers of atoms between the S@ie sizes of the (v) The spectra of the different ions are calculated in de-
transfers by the different atomic processes are compared tail, using the UTA and SOSA formalisms. They are essential
Sec. VQ. data for emissivity and absorption calculations.

Second, the linearization of some exponential functions is The model has been applied successfully to the case of a
guestionable. The most important is that which yields Eqxenon plasma with density,= 10?°° cm™2 and temperature
(12). Is the quantity T.=450eV. The calculated SC's represent aboux &6°

levels. Most of the obtained SC temperatures lie in the range
100-200 eV, which is the signature of plasma conditions far
x=[ - p(P,SC' —SCO)/KT(SC )+ 1kT(SC]AE(Cy) fom LTE 9 P
Another temperature law has been observed. The average-
) } state populations computed for X&iv-xxxI nearly obey a
always small enougffin absolute valuefor the expansion  gecreasing-exponential law versus energy. Thus, one can say
(1+x) to be a good approximation of the exponential func-that there appears a kind dfnic excitation temperature
tion €*? It was possible to test this approximation in the cas&specific to each iofi31].
of xenon. The value ot has been computed for all the 2298  Two major processes have not yet been introduced in nu-
SC' —SC superarrays encountered in that case. It has beemerical studies: namely, photoionization and radiative ab-
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sorption. They will be accounted for in the cases of optically =~ APPENDIX: LINEARIZATION IN THE MASTER
thick plasmas. EQUATION
Configuration interaction—i.e., the mixing between non-

oS . . : ) In the master equation, the fraction
relativistic configurations—has not been included in the cal-

culations, although it may induce large changes in some a(P,SC —-SO)+B(P,SC—SOAE(C))
spectral featureg33,34. Actually, the mixing between con- Spsc[7(P,SC—=SO)+8(P,SC —-SCAE(C)]
figurations belonging to different SC’s of an ion could be ' (A1)

called a superconfiguration interaction and might be comiS not, a priori, a linear function ofAE(C,). In general, it
puted as such. ’ r 17 >
For the extension of the model to other fields, an essential> efp? AaE?g)o]X'_rphe:t:g a byro t?igte r:/%r;lljlgga&E?g;:tﬂ
improvement will be the replacement of the time—consumingch’ésen f::)r con|1p.uting the Egns?amtm ande Theselvalues
calculation of the coefficients of the equations by an analytic(,ﬂeAE(C )/3, 0, and— AE(Cq)/3 wh1ereC .is the ground
0 ) ) 0 1 0

method. This work is in progress. In this way, an extension to, .. -
: . . . configuration ofSC[AE(C;)<0]. They correspond to the
non-LTE time-dependent calculations will be made possible g [AE(Co)<0] y b

energy range o5C where the configuration distribution is
the most dense. By identifying the fraction with the nonlin-
ear function, three equations are obtained. For example, the
ACKNOWLEDGMENTS equation withAE(C;)=0 yields

This work was performed under the auspices of the U.S. a(P,SC' —SC)
D_epartment of_ Energy by University of California Lawrence Nt p= Specy(P,SC-SC) (A2)
Livermore National Laboratory under Contract No. W-7405- '
Eng-48. The other two equations yield fine,

_ 3 [Zrscl7(PSCSC)—4(P,SC-SC)AE(CY/3
~AE(Co) "\ Zp o[ 7(P.SC—SC)+4(P,SC—SC)AE(Cy)/3]

(A3)

€

and

- AE(Cy) [B(P,SC —SO)Sp ¢ y(P,SC-SC)]~[a(P,SC —SOIp 5o 8(P,SC —SO)]
K 3{exdeAE(Cy)/3]- 1} [Spscy(P,.SC>SC)+8(P,SC—+SC)AE(Cy)/3][Sp s ¥(P,.SC—SC)]

(A4)

By expanding linearly the function ejgAE(C;)], one finds that the coefficient§ P,SC' —SC) andr(P,SC' —SC) in Egs.
(10—(12) are equal to X+ ) and ue, respectively.
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