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Model for computing superconfiguration temperatures
in nonlocal-thermodynamic-equilibrium hot plasmas
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A model is presented where the level-population densities in quasi-steady-state hot dense plasmas are
described by means of large nonrelativistic superconfigurations~SC’s!, whose configuration populations follow
a decreasing-exponential law versus energy~Boltzmann like! for a temperature depending on the SC. Two
systems of linear equations are obtained. The first one yields the average-state population densities of the SC’s.
Using these results, the second system yields the SC temperatures. In this model, a very large number of atomic
levels is accounted for in a simple way, thus yielding the configuration populations and, hence, the ionic
distribution and average charge. It also yields accurate simulations of the spectra, which are of the essence for
emissivity and absorption calculations. It opens a way to time-dependent calculations.
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I. INTRODUCTION

Typical hot-plasma experiments are currently made by
teracting lasers with pulse lengths ranging from subpicos
ond@1,2# to several nanoseconds@3,4#, fast ignitors@5#, high-
intensityX @6# andZ @7# pinches, hohlraum x-ray drives@8#,
and coherent x-ray sources@9# with solid and gaseous
targets.1 The plasmas in these experiments form ve
quickly, reach high electron temperatures, and span a l
range of densities. Therefore, for describing the result
plasma ions, the simple laws of local thermodynamic eq
librium ~LTE! are not pertinent. Several non-LTE~NLTE!
simulation methods have been proposed, in which the va
of the ion population densities~more simply calledpopula-
tions in the following! are derived by taking explicitly into
account the effects of different atomic processes occurrin
the plasma. The results of some of these codes have
presented in a NLTE kinetics workshop@10#. For high-Z
plasmas, the discrepancies between the results are very l
and the conclusion is that more work is needed.

Generally, the method used for finding non-LTE lev
populations is the collisional-radiative model~CRM! @11,12#.
It consists in solving a homogeneous system of many lin
balance equations. Each equation relates to one atomJ
level. The equation represents the equality between the n
ber of atoms that are brought to this level per second and
number of those which leave it. In all hot plasmas, exc
those of the very light elements, several thousands or
lions of levels are needed for obtaining significant physi
results. For this reason such systems are not tractable,
some types of global methods have been proposed, in w
the individual levels are replaced by large ensembles of
els.

1The references in the preceding sentence are a parochial sub
the available literature and do not represent the broad and dyn
efforts on going in the field of plasma x-ray spectroscopy.
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A simple global method consists in defining eachelec-
tronic configurationas one of these ensembles. The avera
transition rates between configurations are computed, a
CRM system with one equation per configuration is solv
@13#. However, more than 10 000 configurations have of
to be introduced. For that reason, larger ensembles
preferred—e.g., thesuperconfigurations~SC’s!, originally
defined by Bar-Shalomet al. @14#. Among all the published
methods, the following two have been the main referen
for the present work.

In the first method, namedAVERROÈS/TRANSPEC @15#,
each SC is defined as the totality of the configurations p
sessing the same fixed set of occupation numbers of
atomic shells. For example, (1)2(2)8(3)5 represents the 15
electronic configurations with 2, 8, and 5 electrons in t
shells n51, 2, and 3, respectively@16#. Average transition
rates for the superarrays between the SC’s are compute
order to write one CRM equation per SC. Within each S
the configurations are assumed to be populated accordin
the electronic temperatureTe .

In the second method, namedSCROLL @17#, the SC’s are
built from relativistic orbitals. For example, the S
(1s 2s 2p1/2 2p3/2)

4(3p1/2 3p3/2)
2 contains 69 relativistic

configurations. At the beginning, large SC’s are defined,
erage transition rates between the SC’s are computed,
the CRM equations are solved for the populations. In sub
quent iterations, the SC’s are split into smaller and sma
SC’s, and the values obtained for their populations are co
pared with those of the previous step. Iterations are stop
when the changes between two steps are considered t
negligible. At the beginning, the total populations of the re
tivistic configurations are assumed to obey the statistical
for a temperatureTz proposed by Busquet in theRADIOM

model @18#—that is, scaled to give an average ionizati
state equivalent to an LTE calculation.

Describing the ionic system as a collection of SC’s m
be insufficient for revealing the spectral details. Indeed,

t of
ic
©2004 The American Physical Society03-1



co
r
ay
-
n
ra

a

a
e.
u

to

on
S
ve

ha

g

ll-
ar
ro
re

ce
h
m
o

up
II
.

ec
re

g-

o

io
na
n

th
on
le
e
io
-

re-

ted
of
a
in

-
8

hree
for

s of
n
ns

ies
ec-

iffi-

by
sion.
n-
C’s,

on-

by
at

to
. 1,

Xe
f a
ra-
ing

tions
s
e SC
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calculating the emissivity and absorption monochromatic
efficients, the transition arrays between electronic configu
tions are used, e.g., in the unresolved transition arr
~UTA’s! formalism @19#. The total population of each con
figuration must be determined. However, there exists
proof that, within each SC, the populations of the configu
tions follow a temperature law for eitherTe or Tz . We pro-
pose another type of model, where within each~nonrelativ-
istic! SC the populations of the configurations obey
temperature law for aneffective temperature T(SC) specific
to that SC. Each configuration is represented by its aver
energy, with the assumption that itsJM states are degenerat
The CRM system is built with one equation per SC. Its n
merical coefficients are combinations of configuration-
configuration transition rates. It happens that it is possible
split the initial system into two systems of the same size,
related to the SC populations and the other one to the
temperatures. From these results, one deduces in a
simple way the configuration populations. It is assumed t
within each configuration, the quantumstatesaJMJ of all
theaJ energy levels~wherea denotes the relevant couplin
scheme! are equally populated.

This model is essentially nonrelativistic~see Sec. V E!.
The LTE laws are not applied, except the Maxwe
distribution law for the free-electron velocities, whose ch
acteristic time is much shorter than those of the atomic p
cesses. The time-consuming splitting/iteration procedu
and the use of partition functions are avoided. Well-balan
sets of SC’s are employed, and convergence is reached w
the number of SC’s introduced is large enough. Let this nu
ber be 200 instead of 100; the increase in the complexity
the calculations is moderate.

In Sec. II, the concept of effective temperatures is s
ported by the correlations, which are explained in Sec.
The relevant equations of the model are derived in Sec. IV
discussion and conclusion are given in Secs. V and VI.

II. TEMPERATURE LAWS

The concept of effective temperatures specific to el
tronic configurations in an atomic plasma has first appea
in the results of tensor-operator calculations@20,21# of spon-
taneous emission in the FeV spectrum. More precisely, if the
level populations of an upper configurationC85n,Nn8,8
~with u,2,8u51) obey the Boltzmann decreasin
exponential law for someconfiguration temperature TC8 , the
radiative transfers to the levels ofC5n,N11 enforce the
same type of law for another temperatureTC @22#.

The above derivation can be extended from spontane
emission to the other seven importantmonoelectronicatomic
processes: i.e., radiative absorption, collisional excitat
and deexcitation, photoionization and radiative recombi
tion, collisional ionization, and three-body recombinatio
This extension is evident for the first process, which is
inverse of radiative emission. In general, it can be dem
strated rigorously for the processes that involve free e
trons, in the assumption that the radial quantity with a giv
name has the same value for all the levels of a configurat
Thus, it is not surprising that it holds fairly well for colli
02640
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sional excitation and deexcitation, in agreement with the
sults of Van Regemorter@23#.

When a quasi-steady-state CRM calculation is compu
for a large number of levels, the populations of the levels
each configurationC tend to obey a temperature law for
specificTC value@24#. This has been checked numerically
three isoelectronic series of ions,26Fe IV-V-VI , 36Kr XIV-XV-

XVI , and 42Mo XX-XXI-XXII , for the same set of configura
tions @25#. This set contains 27 configurations, with 466
levels. Several electronic densities are assumed. T
through eight atomic processes have been introduced,
which the transition rates have been computed by mean
theHULLAC code@26#. The temperature of each configuratio
is determined by fitting the values found for the populatio
of its JM states~i.e., theJ-level populations divided by 2J
11) to a decreasing-exponential law. The uncertaint
found in the fitting process are small. For the lowest el
tronic densities computed (1014 or 1016 cm23), the obtained
temperatures are about 3 or 4 times smaller thanTe , which
means that the system is far from LTE@25#.

Proving the existence of SC temperatures is more d
cult, due to the complexity of the SC’s@27#. Indeed, no ana-
lytic derivation of SC temperatures has yet been found
means of Racah algebra, even for spontaneous emis
However,~i! there exist strong similarities between the tra
sitions between the configurations and those between S
and~ii ! the existence of specific temperatures within the c
figurations can be explained analytically@22# and demon-
strated numerically@25#. In fine, only approximate relations
can be used for writing the equations that yield thesupercon-
figuration temperaturesin a hot plasma@28# ~see Sec. III!. In
the following, they are calledcorrelations.

Fortunately, it is possible to demonstrate numerically,
means of an ordinary collisional-radiative computation, th
the populations of theJM states of some simple SC’s tend
obey a temperature law. An example is presented in Fig

FIG. 1. Evidence for superconfiguration temperatures in
XXVI ~Cu like!. The level populations are determined by means o
level-by-level CRM calculation. They are summed into configu
tion populations. The average populations are deduced by divid
by the degenaracies. The logarithms of these average popula
~circles, squares, diamonds, crosses! are fitted by the least-square
method to four segments, whose slopes are equal to the invers
temperatures. For these fits, the values of Pearson’sr coefficient are
equal to 0.996, 0.861, 0.988, and 0.965, respectively.
3-2
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MODEL FOR COMPUTING SUPERCONFIGURATION . . . PHYSICAL REVIEW E69, 026403 ~2004!
for the case of four SC’s
„(3)18(4)1,(3)18(5)1,(3)17(4)2,(3)17(4)1(5)1

… in the Xe
XXVI ~Cu-like! ion and three SC’s
„(3)18,(3)17(4)1,(3)17(5)1

… in the Xe XXVII ~Ni-like! ion,
which contain altogether 4567 Cu-like and 249 Ni-like le
els. Eight major processes are accounted for: namely, s
taneous emission, collisional excitation and deexcitati
collisional ionization and three-body recombination, autoio
ization and resonant capture, and radiative recombinat
The input data are the electronic densityne

51.231020 cm23 and temperatureTe5450 eV. The ne

value is that of an optically thin plasma, which justifies th
radiative absorption and photoionization are not conside
Moreover, it has been found experimentally that the Cu- a
Ni-like ions are abundant for these values ofne andTe @3#.
First, all these 4816 levels are entered in a level-by-le
CRM calculation and steady-state level populations
found. Second,~i! summing the populations found for th
Cu-like levels ~the most numerous in the calculated lis!
yields the populations of the corresponding 91 configu
tions, ~ii ! the population of each configuration is divided b
the degeneracy for obtaining the average-state popula
~iii ! the logarithms of these average-state populations
plotted versus the configuration-average energies, and~iv!
the points of this plot are fitted by least squares to fo
straight lines, which correspond to the four relevant SC’s

The values deduced for the four SC temperatures are
sented in Fig. 1. Based on the linear variation of the lo
rithms of the average-state populations, the concept of
temperatures, different fromTe , appears to be quite relevan
It is noteworthy that the SC (3)17(4)2 looks like it contains
two sets of configurations with different temperatures. Ho
ever, the straight line that is drawn has been obtained
means of a degeneracy-weighted rms calculation. The
that it nearly coincides with one of the two sets, with
excellent Pearson’sr coefficient, means that the other s
mainly contains configurations with a lower degeneracy,
that the global description of the populations is satisfacto

III. CORRELATIONS BETWEEN TWO SC’s

In the place of exact relations, it is possible to findcorre-
lations between two SC’s that are linked by some atom
process~or within one SC, where this process occurs!. In the
present work, this word simply meansapproximate linear
relations. Their coefficients can be obtained by solvin
through the least-squares method systems of linear e
tions.

A. Typical example: Radiative emission

Radiative emission is the simplest process for demons
ing the existence and the calculation of correlations betw
SC’s. The basic equation is that for the total strengthS(C8
→C) of the electric-dipolar transition array between co
figurationsC andC8:
02640
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S~n,Nn8,8N811n9,9N9
¯→n,N11n8,N8n9,9N9

¯ !

52,.P~n,,n8,8!2S 4,11
N D S 4,811

N8 D S 4,912
N9 D¯ ,

~1!

where P(n,,n8,8) is the radial integral
*0

`un,(r )run8,8(r )r 2dr for electric-dipolar radiative transi
tions, and,. is the larger of the two orbital quantum num
bers , and ,8, and where there may occur more than o

spectatoropen subshell liken9,9N9 @29#. This formula is
interesting because~i! the selection ruleu,2,8u51 strongly
reduces the number of arrays,~ii ! the values of the
P(n,,n8,8) radial integrals can be assumed as independ
of the considered array, and~iii ! for fixed values ofn andn8,
with n,n8, the largest integral is, by far, that with,5n
21 and,85n.

1. First correlation: Correlation between
the configuration energies

In general, in the superarray (SC8→SC)

5„(n)N(n8)N811→(n)N11(n8)N8
…, the higher-~lower-! en-

ergy configurations ofSC8 deexcite preferably towards th
higher-~lower-! energy configurations ofSC. Indeed, in each
transition array, the lower and upper configurations only d
fer by one orbital. The~often! numerous spectator orbital
are unchanged. When most of them are high-energy~low-
energy! orbitals, the energies of both configurations ran
among the highest~lowest! in their SC. This correlation has
also been called a propensity law, when applied to the cas
energy levels in the transition array between configurati
~p. 337 in Ref.@30#!. It is characterized by a coefficient de
noted r(SC8→SC), which is calculated by means of
strength-weighted root-mean-squares equation, which
presses the approximate proportionality betweenDE(Cj8)
5E(Cj8)2Eav(SC8) andDE(Ci)5E(Ci)2Eav(SC), where
i and j refer to configurations ofSC and SC8, respectively,
E(Ci) and E(Cj8) are the configuration energies, an
Eav(SC) andEav(SC8) are the weighted average energies
the configurations ofSCandSC8, respectively. Ther coef-
ficient obeys the equation

(
i , j

S~Cj8→Ci !DE~Ci !DE~Cj8!

5r~SC8→SC!(
i , j

S~Cj8→Ci !DE~Ci !
2. ~2!

In Eq. ~2!, S(Cj8→Ci) is the strength of theCj8→Ci array. It
is defined ~like for all processes! as the productR(Cj8
→Ci)g(Cj8) of the transitionrate Rby the degeneracyg of
the initial configuration.
3-3
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This correlation is exemplified in Fig. 2 for
spontaneous-emission array. In this plot, each segment
the point representing a configurationCi to that representing
the strength-weighted average energy of theCj8 configura-
tions. The fact that most of these segments do not cross i
correlation phenomenon.

2. Second correlation: Correlation between the array strength
and the configuration energies

In eachSC8→SC superarray, the second correlation r
lates the energy of each configuration ofSC to the total
strength of the transition arrays that are linked to it. It rea

( jS~Cj8→Ci !

g~Ci !
5a~SC8→SC!1b~SC8→SC!DE~Ci !,

~3!

with the same notations as in Eq.~2!, and whereg(Ci) is the
degeneracy of configurationi. It can also be written forSC8,
for the same atomic process, in the form

( iS~Cj8→Ci !

g~Cj8!
5g~SC8→SC!1d~SC8→SC!DE~Cj8!.

~4!

For this correlation, the pertinent graphs are such that
left-hand parts of Eqs.~3! and ~4! are plotted versus the
energiesDE(Ci) and DE(Cj8), respectively. In general, th
corresponding a(SC8→SC), b(SC8→SC), g(SC8
→SC), and d(SC8→SC) coefficients are deduced from
such plots through least-squares fits to the linear expans
in Eqs. ~3! and ~4!. This correlation can be derived analyt
cally in some simple cases@28#. It is generally less well
obeyed than the first one.

FIG. 2. Correlation between the configuration energies in
(3)4(5)1-(3)3(5)2 superarray of GeXVIII . Each point in the vertical
scale on the left represents the energy of a configuration
(3)4(5)1. It is linked by a straight line to a point on the righ
whose ordinate is the weighted average energy of all the confi
rations of (3)3(5)2, each weight being the relevant electric-dipol
strength. It can be seen that the higher~lower! configurations of
(3)3(5)2 deexcite preferably towards the higher~lower! configura-
tions of (3)4(5)1.
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B. Generalization to the other atomic processes

The validity of the first correlation@Eq. ~2!# can be ex-
tended from spontaneous emission to all the other seven
portantmonoelectronicatomic processes. Indeed, this corr
lation is essentially based on the fact that onlyoneelectron
changes in the process, whereas the same spectator elec
are responsible for the bulk of the energies of both confi
rations in a transition array. Four numerical examples
presented in Fig. 3, for four different processes: name
spontaneous emission, collisional excitation, collisional io
ization, and autoionization. Actually, autoionization is adi-
electronicprocess. On the average, the first correlation is l
well obeyed than for the monoelectronic processes, beca
it is based on the fact that onlytwo electrons change.

The validity of the second correlation@Eqs. ~3! and ~4!#
can be extended to collisional excitation and deexcitati
whose rates have large values only for optically allow
transitions@23#. It can also be extended to photoionizatio
and radiative recombination, for which it is known that th
dominant radial parameters relate to the same pairs of o
als as those for radiative emission. Four numerical exam
are presented in Fig. 4, for the same four processes
in Fig. 3.

IV. COLLISIONAL-RADIATIVE EQUATIONS

A. General transfer equation

The quantity that represents the transfer of atoms per
time from all the configurations of the ions to some config
ration Ci of superconfigurationSC reads(P,SC8, jR(P,Cj8
→Ci)N(Cj8). In this sum,N(Cj8) is the population of con-
figurationCj8 , P is an atomic process, andR(P, Cj8→Ci) is
a transfer rate fromCj8 to Ci . The temperature law inSC8 is
written in the form

N~Cj8!5g~Cj8!n~SC8!expS 2
DE~Cj8!

kT~SC8!
D , ~5!

wheren(SC8) is defined as theaverage-statepopulation of
Cj8 . The quantityn(SC8) can also be written as the tota
population ofSC8 divided by the partition function ofSC8
for temperatureT(SC8). Thus, the total transfer of atom
towardsCi reads

FdN~Ci !

dt G
in

5 (
P,SC8, j

R~P,Cj8→Ci !g~Cj8!n~SC8!

3expS 2
DE~Cj8!

kT~SC8!
D . ~6!

By definition, the productR(P,Cj8→Ci)g(Cj8) is the total

e

of

u-
3-4
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strengthS(P,Cj8→Ci) of the transitions fromCj8 to Ci through theP process. The sum overj also includes the levels tha
belong toSC, but not toCi .

The correlation laws introduced in Sec. III are now taken into account. Through the first one, the energy in Eq.~6! can be
replaced by the productr(P,SC8→SC)DE(Ci). Through the second one, the sumS j R(P,Cj8→Ci)g(Cj8)
is replaced byg(Ci)@a(P,SC8→SC)1b(P,SC8→SC)DE(Ci)#. In this way, theCj8 configuration disappears from th
formula for the transfer:

FdN~Ci !

dt G
in

5g~Ci ! (
P,SC8

n~SC8!@a~P,SC8→SC!1b~P,SC8→SC!DE~Ci !#expS 2
r~P,SC8→SC!DE~Ci !

kT~SC8! D . ~7!

In the final equation fordN(Ci)/dt, one also includes the contributions of the processes which transfer atomsfrom Ci to
all the other configurations of the system. For that purpose, Eqs.~4! and ~5! are applied, yielding

dN~Ci !

dt
5g~Ci ! (

P,SC8
n~SC8!@a~P,SC8→SC!1b~P,SC8→SC!DE~Ci !#expS 2

r~P,SC8→SC!DE~Ci !

kT~SC8! D
2g~Ci !n~SC!expS 2

DE~Ci !

kT~SC! D (
P,SC8

@g~P,SC→SC8!1d~P,SC→SC8!DE~Ci !#. ~8!

We call Eq.~8! themaster equationof the model. In the sums,SC8 is not necessarily different fromSC, because summing
over P ought to include the processes which are responsible for the transfers between the configurations withinSC.

B. Linearization of the collisional-radiative equations

Equation~8! is a balance equation. In the quasi-steady-state approximation,dN(Ci)/dt is equal to zero. One is left with a
set of nonlinear coupled equations~one per superconfiguration!, where the unknown quantities are the average-state pop
tionsn(SC8) and the inverse temperatures 1/T(SC8) of all the SC’s. It is essential to linearize these equations with respe
the latter type of unknown quantities.

First, one can divide the first sum in Eq.~8! by the second sum, which gives

FIG. 3. Correlations between
the configuration energies of two
SC’s. In each plot, the absciss
and the ordinate of each point ar
the energies of two configuration
linked by an atomic process, re
spectively.~a! Xe XXIX , spontane-
ous emission within (3)15(4)1.
~b! Xe XXVIII , collisional excita-
tion within (3)15(4)2. ~c! Xe
XXVIII and Xe XXIX , collisional
ionization from (3)15(4)2 to
(3)15(4)1. ~d! Xe XXIX and Xe
XXX , autoionization from
(3)14(5)1(6)1 to (3)14(4)1. All
energies are in eV.
026403-5
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(
P,SC8

n~SC8!
a~P,SC8→SC!1b~P,SC8→SC!DE~Ci !

(P,SC8@g~P,SC→SC8!1d~P,SC→SC8!DE~Ci !#
expS 2

r~P,SC8→SC!DE~Ci !

kT~SC8! D
5n~SC!expS 2

DE~Ci !

kT~SC! D . ~9!

The fraction in the first line of Eq.~9! is not a linear function ofDE(Ci). But it can be approximated by the linear expansi

q~P,SC8→SC!1r ~P,SC8→SC!DE~Ci !,

where the coefficientsq and r are determined as is shown in the Appendix.
Second, after dividing the exponential function in the first term of Eq.~9! by that in the second term, one obtains

(
P,SC8

n~SC8!@q~P,SC8→SC!1r ~P,SC8→SC!DE~Ci !#expS 2
r~P,SC8→SC!DE~Ci !

kT~SC8!
1

DE~Ci !

kT~SC! D5n~SC!. ~10!

FIG. 4. Correlations between
array strengths and configuratio
energies. In each plot, the abscis
of each point is the energy of a
configuration in some SC, and it
ordinate is the sum of the
strengths of the transitions whic
are linked to that configuration by
some atomic process, divided b
its degeneracy.~a! Xe XXIX , spon-
taneous emission within
(3)15(4)1. ~b! Xe XXVIII , colli-
sional excitation from (3)16(5)1

to (3)15(5)2. ~c! Xe XXIX and Xe
XXVIII , collisional ionization from
(3)15(4)2 to (3)15(4)1. ~d! Xe
XXIX and Xe XXX , autoionization
from (3)14(4)1(5)1 to (3)15. Or-
dinates are in atomic units and ab
scissas are in eV.
c
t

to
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-

Most often, ther factors do not differ much from 1~see Sec.
V D!. Therefore, for expanding safely the exponential fun
tion as a linear function ofDE(Ci), it is not necessary tha
DE(Ci) be much smaller thankT(SC) and kT(SC8). It is
only necessary that all the temperatures do not differ
much one from the other, within each pair of neighbori
ions.

C. Splitting of the collisional-radiative system of equations

Actually, Eq.~10! is valid for all the configurations of the
ions in the plasma. By making all theDE(Ci) quantities
02640
-

o

equal to zero, one obtains a system of homogeneous li
equations for the average-state populations. The equation
superconfigurationSC reads

(
P,SC8

n~SC8!q~P,SC8→SC!5n~SC!. ~11!

Subtracting Eq.~11! from Eq. ~10!, expanding linearly the
exponential function, dropping terms inDE(Ci)

2 ~this ap-
proximation is discussed in Sec. V D!, and dividing the
whole equation byDE(Ci), one obtains a system of inho
3-6
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mogeneous linear equations for the inverses of theSC tem-
peratures. The equation for superconfigurationSC reads

(
P,SC8

n~SC8!Fq~P,SC8→SC!S r~P,SC8→SC!

kT~SC8!

2
1

kT~SC! D2r ~P,SC8→SC!G50. ~12!

The computation runs as follows. First, the system
equations~11! for the average-state populations of the SC
is solved. Second, its numerical solutions are implemen
into the system of equations~12!, which can be solved for
the inverse temperatures of the SC’s.

V. DISCUSSION

A. Numerical application

Much information has already been gained from the fi
numerical application of the present model@31#. The case
studied is that of an experimentally well-characterized xen
plasma, for the electronic density 1.331020 cm23 and tem-
perature 415 eV@3#. The relevant ions range from XeXXIV

to Xe XXXI . In each ion, 13 or 14 SC’s are selecte
They constitute two sets. The first set of SC’s
KL(3)N, KL(3)N21(4,5,6,7,8)1, KL(3)N22(4)2,
KL(3)N22(4)1(5,6,7,8)1, andKL(3)N22(5,6)2, in the nota-
tion for the SC’s, withN514– 18. The second set read
KLM (4)N8, KLM (4)N821(5,6,7,8)1, KL(3)17(4)N811,
KL(3)17(4)N8(5,6,7,8)1, and KL(3)17(4)N821(5,6)2, with
N851 – 3. HereK, L, and M represent the complete shel
n51, 2, and 3, respectively. For example, the SC’s cons
ered for XeXXVIII and the numbers of their configuration
are listed in the first two columns of Table I. Then(SC) and
T(SC) values have been determined numerically. The po
lations of all the configurations, hence, those of the SC
have been obtained by means of Eq.~5!.

The obtained ionic distribution is very close to that pu
lished previously@3#. For the comparison with the exper
mental spectrum, the fact that the model yields the confi
ration populations is essential, because these populations
be entered into the formalism of unresolved transit
arrays—i.e., in the form of UTA’s or spin-orbit-split array
~SOSA’s! @19#.

B. Selection of the superconfigurations

In the model, the atomic levels are gathered into SC
which are, actually, pairs of Layzer complexes@16#. This
choice offers several advantages. First, the number of SC
relatively small, because they have large degeneracies
because they are nonrelativistic~see Sec. V E below!. Sec-
ond, they possess some correlation properties, which h
been foreseen in special cases and which are crucial for
veloping the model. Third, the sets of SC’s chosen for
various ions resemble each other very much, because
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only differ by the total numbers of electrons~see Sec. V A
above!. In this way, it is ensured that the totality of the sets
well balanced.

The number of SC’s that ought to be considered for so
ing a given physical situation remains an open problem.
consider that it suffices to choose enough well-balanced
of SC’s for neighboring ions, like those defined in Sec. V
This avoids resorting to the use of partition functions. T
partition function is the Saha-Boltzmann population of
given SC in the considered space of SC’s for a given te
perature, which may or may not be the temperature of
free electrons that drive the system@18#. In order to converge
to a truly non-LTE set of SC populations, one must ite
tively split the considered SC’s, recompute the partiti
functions, and then recompute the resulting SC populati
@17#. Our method avoids starting from a Saha-Boltzma
description of SC populations at some~adapted! temperature
and avoids iteratively generating rates and resolving the m
ter equation.

C. Relevance of the high-lying SC’s

It is interesting to discuss the necessity of introducing
high-lying SC’s in numerical applications of the model. F
that purpose, one can compare the relative contribution
the SC’s~i! to the total populations of the ions and~ii ! to the
transfers between the SC’s. This comparison can be see
Table I for the 14 SC’s of the XeXXVIII ion ~Co-like!. For
each SC, the incoming flux~in the far-right column! is de-
fined as the total number of the atoms which are brought,
unit time, summed over the different processes, either fr
the upper or from the lower Co-like SC’s or from the SC’s
the neighboring Fe- and Ni-like ions. The comparison
most striking for the lowest@(3)17# and the 12th@(3)15(5)2#
SC’s. Whereas the 12th is 4500 times less populated than
lowest, its incoming flux is only 160 times smaller. The i
coming fluxes are also very large for (3)15(4)2 and
(3)15(4)(5). It can bechecked that this is due to very activ

TABLE I. Superconfigurations introduced for XeXXVIII

~Co-like!.

Superconfiguration No. conf.
kT(SC)

~eV!
Relative

population
Incoming
flux ~s21!

(3)17 3 175 8.9531021 1.7231011

(3)16(4)1 24 189 7.8131022 6.5231010

(3)16(5)1 30 175 6.2231023 9.663109

(3)16(6)1 36 108 1.8131023 3.723109

(3)16(7)1 42 176 1.4531024 2.653109

(3)16(8)1 48 220 1.1731024 1.603109

(3)15(4)2 90 168 2.2031023 2.6631010

(3)15(4)1(5)1 180 169 2.3031023 1.2131010

(3)15(4)1(6)1 216 126 1.5231023 4.783109

(3)15(4)1(7)1 252 118 3.2131024 2.613109

(3)15(4)1(8)1 288 123 2.1131024 1.483109

(3)15(5)2 135 144 1.9031024 1.073109

(3)15(5)1(6)1 270 139 6.7031025 8.323108

(3)15(6)2 189 124 1.5831025 1.563108
3-7
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autoionization and resonant-capture channels, which hap
to predominate by one order of magnitude over
spontaneous-emission process. It can be concluded tha
highest SC’s definitely participate in the dynamical equil
rium of the level populations, although they contribute ve
little to the emitted spectrum.

For the relative importance of the various processes,
other kind of comparison is presented in Table II. For ea
process, the total flux is the sum of the incoming fluxes to
the SC’s. In this way, it appears that autoionization and re
nant capture have fluxes nearly equal to the larg
three: namely, those of spontaneous emission and c
sional excitation and deexcitation. The importance of th
dielectronic processes has already been stressed@32,4#. Here,
it has also been found that, if the autoionization a
resonant-capture processes are discarded from the cal
tions, the average charge increases by more than
charges. Moreover, it has been seen that about 30% o
total autoionization flux goes to SC’s that are not the low
in their respective ions.

D. Validation of the linearization procedures

In addition to the initial basic assumption of the tempe
ture law, two important approximations ought to be va
dated. First, the linear correlations often correspond to m
less convincing plots than those of Figs. 3 and 4. Howeve
has been found, in the example of the xenon plasma, tha
processes with the best correlation plots correspond to
largest transfers of atoms between the SC’s~the sizes of the
transfers by the different atomic processes are compare
Sec. V C!.

Second, the linearization of some exponential function
questionable. The most important is that which yields E
~12!. Is the quantity

x5@2r~P,SC8→SC!/kT~SC8!11/kT~SC!#DE~C1!

always small enough~in absolute value! for the expansion
(11x) to be a good approximation of the exponential fun
tion ex? It was possible to test this approximation in the ca
of xenon. The value ofx has been computed for all the 229
SC8→SC superarrays encountered in that case. It has b

TABLE II. Total flux per process~s21!.

Spontaneous emission 7.9231011

Collisional excitation 3.1831011

Collisional deexcitation 4.8731011

Collisional ionization 5.523109

Radiative recombination 1.523109

Three-body recombination 3.703107

Autoionization 4.1231011

Resonant capture 4.1631011
02640
en
e
the
-

n-
h
ll
o-
st
li-
e

d
la-
ur
he
t

-

h
it
he
he

in

is
.

-
e

en

found that the value of the~positive! relative difference (ex

212x)/ex is smaller than 0.18 in 74% of the superarray
This is a favorable test. It is significant, although it is madea
posteriori.

E. Relativistic effects

The transition rates used in the present work are ca
lated between nonrelativistic configurations. However,
gross relativistic effects are taken into account in the se
that the energy Slater integrals and the transition rates
computed in the Pauli-Breit approximation. TheJ-dependent
relativistic effects can be neglected for the determination
populations and temperatures. For example, the spin-o
effects are not expected to have any noticeable importanc
the population regime, because the collisional transition ra
are made of off-diagonal elements ofG, the electrostatic-
repulsion operator@13#.

However, after the populations have been obtain
J-dependent relativistic effects may be important for the fi
calculations of emissivity and absorption. Indeed, they of
result in the breaking of transition arrays~UTA’s! into spin-
orbit split arrays~SOSA’s!, in which the electric-dipolar tran-
sition integrals areJ dependent.

VI. SUMMARY AND CONCLUSION

In conclusion, the method of superconfiguration tempe
tures is a type of collisional-radiative model where dozens
thousands of electronic configurations can be accounted
by solving small-size systems of linear equations. The ope
tions run as follows.

~i! The coefficients for the linear equations are deduc
from those for the transition rates between configuratio
calculated through existing codes.

~ii ! The system of equations for the average-state pop
tions of the SC’s is solved.

~iii ! Using these populations, the system of equations
the temperatures of the SC’s is solved.

~iv! The populations of the configurations are deduc
using Eq.~5!, and they are added for each of the ions. T
yields the ionic balance of the plasma and theZ* value.

~v! The spectra of the different ions are calculated in d
tail, using the UTA and SOSA formalisms. They are essen
data for emissivity and absorption calculations.

The model has been applied successfully to the case
xenon plasma with densityne51020 cm23 and temperature
Te5450 eV. The calculated SC’s represent about 663106

levels. Most of the obtained SC temperatures lie in the ra
100–200 eV, which is the signature of plasma conditions
from LTE.

Another temperature law has been observed. The aver
state populations computed for XeXXIV–XXXI nearly obey a
decreasing-exponential law versus energy. Thus, one can
that there appears a kind ofionic excitation temperature,
specific to each ion@31#.

Two major processes have not yet been introduced in
merical studies: namely, photoionization and radiative
3-8
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sorption. They will be accounted for in the cases of optica
thick plasmas.

Configuration interaction—i.e., the mixing between no
relativistic configurations—has not been included in the c
culations, although it may induce large changes in so
spectral features@33,34#. Actually, the mixing between con
figurations belonging to different SC’s of an ion could
called a superconfiguration interaction and might be co
puted as such.

For the extension of the model to other fields, an essen
improvement will be the replacement of the time-consum
calculation of the coefficients of the equations by an anal
method. This work is in progress. In this way, an extension
non-LTE time-dependent calculations will be made possib
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APPENDIX: LINEARIZATION IN THE MASTER
EQUATION

In the master equation, the fraction

a~P,SC8→SC!1b~P,SC8→SC!DE~Ci !

(P,SC8@g~P,SC8→SC!1d~P,SC8→SC!DE~Ci !#
~A1!

is not, a priori, a linear function ofDE(Ci). In general, it
can be approximated by the nonlinear functionl
1m exp@«DE(Ci)#. Three appropriate values ofDE(Ci) are
chosen for computing the constantsl, m, and«. These values
areDE(C0)/3, 0, and2DE(C0)/3, whereC0 is the ground
configuration ofSC @DE(C0),0#. They correspond to the
energy range ofSC where the configuration distribution i
the most dense. By identifying the fraction with the nonli
ear function, three equations are obtained. For example,
equation withDE(Ci)50 yields

l1m5
a~P,SC8→SC!

(P,SC8g~P,SC→SC8!
. ~A2!

The other two equations yield,in fine,
«5
3

DE~C0!
lnS (P,SC8@g~P,SC→SC8!2d~P,SC→SC8!DE~C0!/3#

(P,SC8@g~P,SC→SC8!1d~P,SC→SC8!DE~C0!/3# D ~A3!

and

m5
DE~C0!

3$exp@«DE~C0!/3#21%

@b~P,SC8→SC!(P,SC8g~P,SC→SC8!#2@a~P,SC8→SC!(P,SC8d~P,SC8→SC!#

@(P,SC8g~P,SC→SC8!1d~P,SC→SC8!DE~C0!/3#@(P,SC8g~P,SC→SC8!#
.

~A4!

By expanding linearly the function exp@«DE(Ci)#, one finds that the coefficientsq(P,SC8→SC) andr (P,SC8→SC) in Eqs.
~10!–~12! are equal to (l1m) andm«, respectively.
L.
C.

J.

sc.

R.

A.

.

@1# P. Audebert, R. Shepherd, K. B. Fournier, O. Peyrusse,
Price, R. Lee, P. Springer, J.-C. Gauthier, and L. Klein, Ph
Rev. Lett.89, 265001~2002!.

@2# S. B. Hansen, A. S. Shlyaptseva, A. Y. Faenov, I. Y. Skobe
A. I. Magunov, T. A. Pikuz, F. Blasco, F. Dorchies, C. Stenz,
Salin, T. Auguste, S. Dobosz, P. Monot, P. D’Oliveira, S. H
lin, U. I. Safronova, and K. B. Fournier, Phys. Rev. E66,
046412~2002!.

@3# C. Chenais-Popovics, V. Malka, J.-C. Gauthier, S. Gary,
Peyrusse, M. Rabec-LeGloahec, I. Matsushima, C. Bauc
Arnoult, A. Bachelier, and J. Bauche, Phys. Rev. E65, 046418
~2002!.

@4# M. E. Foord, S. H. Glenzer, R. S. Thoe, K. L. Wong, K. B
Fournier, B. G. Wilson, and P. T. Springer, Phys. Rev. Lett.85,
992 ~2000!.

@5# M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilk
J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Maso
Phys. Plasmas1, 1626~1994!.

@6# A. S. Shlyaptseva, S. B. Hansen, V. L. Kantsyrev, D. A. Fed
.
.

,
.

.
e-

,

,

N. Ouart, K. B. Fournier, and U. I. Safronova, Phys. Rev. E67,
026409~2003!.

@7# K. L. Wong, P. T. Springer, J. H. Hammer, C. A. Iglesias, A.
Osterheld, M. E. Foord, H. C. Bruns, J. A. Emig, and
Deeney, Phys. Rev. Lett.80, 2334~1998!.

@8# S. H. Glenzer, K. B. Fournier, B. G. Wilson, W. Lee, and L.
Suter, Phys. Rev. Lett.87, 045002~2001!.

@9# P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnu¨rer,
I. Will, and W. Sandner, Phys. Rev. Lett.78, 2748~1997!.

@10# R. W. Lee, J. K. Nash, and Y. Ralchenko, J. Quant. Spectro
Radiat. Transf.58, 737 ~1997!.

@11# D. R. Bates, A. E. Kingston, and R. W. P. McWhirter, Proc.
Soc. London, Ser. A267, 297 ~1962!.

@12# R. W. P. McWhirter, Phys. Rep.37, 165 ~1978!.
@13# O. Peyrusse, J. Phys. B32, 683 ~1999!.
@14# A. Bar-Shalom, J. Oreg, W. H. Goldstein, D. Shvarts, and

Zigler, Phys. Rev. A40, 3183~1989!.
@15# O. Peyrusse, J. Phys. B33, 4303~2000!; J. Quant. Spectrosc

Radiat. Transf.71, 571 ~2001!.
3-9



l.

py

. B

s

f.

diat.

nd

K.
ant.

m,

BAUCHE, BAUCHE-ARNOULT, AND FOURNIER PHYSICAL REVIEW E69, 026403 ~2004!
@16# D. Layzer, Ann. Phys.~N.Y.! 8, 271 ~1959!.
@17# A. Bar-Shalom, J. Oreg, and M. Klapisch, Phys. Rev. E56,

R70 ~1997!; J. Quant. Spectrosc. Radiat. Transf.65, 43 ~2000!.
@18# M. Busquet, Phys. Fluids B5, 4191~1993!; M. Klapisch and

A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transf.58, 687
~1997!.

@19# J. Bauche, C. Bauche-Arnoult, and M. Klapisch, Adv. At. Mo
Phys.23, 131 ~1987!.

@20# G. Racah, Phys. Rev.62, 438 ~1942!; 76, 1352~1949!.
@21# B. R. Judd, Operator Techniques in Atomic Spectrosco

~McGraw-Hill, New York, 1963!.
@22# C. Bauche-Arnoult, J. Bauche, and J. O. Ekberg, J. Phys. B15,

701 ~1982!.
@23# H. Van Regemorter, Astrophys. J.136, 906 ~1962!.
@24# J. Bauche and C. Bauche-Arnoult, J. Phys. B33, L283 ~2000!.
@25# K. B. Fournier, J. Bauche, and C. Bauche-Arnoult, J. Phys

33, 4891~2000!.
@26# A. Bar-Shalom, M. Klapisch, and J. Oreg, J. Quant. Spectro
02640
c.

Radiat. Transf.71, 169 ~2001!.
@27# M. Busquet and P. Cosse´, J. Quant. Spectrosc. Radiat. Trans

65, 101 ~2000!; and private communication.
@28# C. Bauche-Arnoult and J. Bauche, J. Quant. Spectrosc. Ra

Transf.71, 189 ~2001!.
@29# J. Bauche, C. Bauche-Arnoult, E. Luc-Koenig, J.-F. Wyart, a

M. Klapisch, Phys. Rev. A28, 829 ~1983!.
@30# J. Bauche and C. Bauche-Arnoult, inLaser Interactions with

Atoms, Solids and Plasmas, edited by R. M. More~Plenum
Press, New York, 1994!.

@31# J. Bauche, C. Bauche-Arnoult, O. Peyrusse, A. Bachelier,
B. Fournier, C. Chenais-Popovics, and J.-C. Gauthier, J. Qu
Spectrosc. Radiat. Transf.81, 47 ~2003!.

@32# J. R. Albritton and B. G. Wilson, Phys. Rev. Lett.83, 1594
~1999!.

@33# J. Bauche, C. Bauche-Arnoult, M. Klapisch, P. Mandelbau
and J.-L. Schwob, J. Phys. B20, 1443~1987!.

@34# J. Bauche and C. Bauche-Arnoult, J. Phys. B22, 2503~1989!.
3-10


